从0开始学微服务

单体应用

单体应用:LAMP(Linux + Apache + MySQL + PHP)和MVC(Spring + iBatis/Hibernate + Tomcat)

然而随着业务规模的不断扩大,团队开发人员的不断扩张,单体应用架构就会开始出现问题。经历过业务和团队快速增长的同学都会对此深有感触。大概会有以下几个方面的问题。

  • 部署效率低下。当单体应用的代码越来越多,依赖的资源越来越多时,应用编译打包、部署测试一次,甚至需要10分钟以上。这也经常被新加入的同学吐槽说,部署测试一次的时间,都可以去楼下喝杯咖啡了。

  • 团队协作开发成本高。以我的经验,早期在团队开发人员只有两三个人的时候,协作修改代码,最后合并到同一个master分支,然后打包部署,尚且可控。但是一旦团队人员扩张,超过5人修改代码,然后一起打包部署,测试阶段只要有一块功能有问题,就得重新编译打包部署,然后重新预览测试,所有相关的开发人员又都得参与其中,效率低下,开发成本极高。

  • 系统高可用性差。因为所有的功能开发最后都部署到同一个WAR包里,运行在同一个Tomcat进程之中,一旦某一功能涉及的代码或者资源有问题,那就会影响整个WAR包中部署的功能。比如我经常遇到的一个问题,某段代码不断在内存中创建大对象,并且没有回收,部署到线上运行一段时间后,就会造成JVM内存泄露,异常退出,那么部署在同一个JVM进程中的所有服务都不可用,后果十分严重。

  • 线上发布变慢。特别是对于Java应用来说,一旦代码膨胀,服务启动的时间就会变长,有些甚至超过10分钟以上,如果机器规模超过100台以上,假设每次发布的步长为10%,单次发布需要就需要100分钟之久。因此,急需一种方法能够将应用的不同模块的解耦,降低开发和部署成本。

服务化

用通俗的话来讲,服务化就是把传统的单机应用中通过JAR包依赖产生的本地方法调用,改造成通过RPC接口产生的远程方法调用。一般在编写业务代码时,对于一些通用的业务逻辑,把它抽象并独立成为专门的模块,因为这对于代码复用和业务理解都大有裨益。

通过服务化,可以解决单体应用膨胀、团队开发耦合度高、协作效率低下的问题。

服务化拆分

从我所经历过的多个项目来看,项目第一阶段的主要目标是快速开发和验证想法,证明产品思路是否可行。这个阶段功能设计一般不会太复杂,开发采取快速迭代的方式,架构也不适合过度设计。所以将所有功能打包部署在一起,集中地进行开发、测试和运维,对于项目起步阶段,是最高效也是最节省成本的方式。当可行性验证通过,功能进一步迭代,就可以加入越来越多的新特性。

比如做一个社交App,初期为了快速上线,验证可行性,可以只开发首页信息流、评论等基本功能。产品上线后,经过一段时间的运营,用户开始逐步增多,可行性验证通过,下一阶段就需要进一步增加更多的新特性来吸引更多的目标用户,比如再给这个社交App添加个人主页显示、消息通知等功能。

一般情况下,这个时候就需要大规模地扩张开发人员,以支撑多个功能的开发。如果这个时候继续采用单体应用架构,多个功能模块混杂在一起开发、测试和部署的话,就会导致不同功能之间相互影响,一次打包部署需要所有的功能都测试OK才能上线。

不仅如此,多个功能模块混部在一起,对线上服务的稳定性也是个巨大的挑战。比如A开发的一个功能由于代码编写考虑不够全面,上线后产生了内存泄漏,运行一段时间后进程异常退出,那么部署在这个服务池中的所有功能都不可访问。一个经典的案例就是,曾经有一个视频App,因为短时间内某个付费视频访问量巨大,超过了服务器的承载能力,造成了这个视频无法访问。不幸的是,这个网站付费视频和免费视频的服务部署在一起,也波及了免费视频,几乎全站崩溃。

根据我的实际项目经验,一旦单体应用同时进行开发的人员超过10人,就会遇到上面的问题,这个时候就该考虑进行服务化拆分了。

那么服务化拆分具体该如何实施呢?一个最有效的手段就是将不同的功能模块服务化,独立部署和运维。以前面提到的社交App为例,你可以认为首页信息流是一个服务,评论是一个服务,消息通知是一个服务,个人主页也是一个服务。

这种服务化拆分方式是纵向拆分,是从业务维度进行拆分。标准是按照业务的关联程度来决定,关联比较密切的业务适合拆分为一个微服务,而功能相对比较独立的业务适合单独拆分为一个微服务。

还有一种服务化拆分方式是横向拆分,是从公共且独立功能维度拆分。标准是按照是否有公共的被多个其他服务调用,且依赖的资源独立不与其他业务耦合。

继续以前面提到的社交App举例,无论是首页信息流、评论、消息箱还是个人主页,都需要显示用户的昵称。假如用户的昵称功能有产品需求的变更,你需要上线几乎所有的服务,这个成本就有点高了。显而易见,如果我把用户的昵称功能单独部署成一个独立的服务,那么有什么变更我只需要上线这个服务即可,其他服务不受影响,开发和上线成本就大大降低了。

但并不是说功能拆分的越细越好,过度的拆分反而会让服务数量膨胀变得难以管理,因此找到符合自己业务现状和团队人员技术水平的拆分粒度才是可取的。建议的标准是按照每个开发人员负责不超过3个大的服务为标准,毕竟每个人的精力是有限的,所以在拆分微服务时,可以按照开发人员的总人数来决定。

服务化拆分的前置条件:

下面几个问题,是从单体应用迁移到微服务架构时必将面临也必须解决的。

  • 服务如何定义。对于单体应用来说,不同功能模块之前相互交互时,通常是以类库的方式来提供各个模块的功能。对于微服务来说,每个服务都运行在各自的进程之中,应该以何种形式向外界传达自己的信息呢?答案就是接口,无论采用哪种通讯协议,是HTTP还是RPC,服务之间的调用都通过接口描述来约定,约定内容包括接口名、接口参数以及接口返回值。

  • 服务如何发布和订阅。单体应用由于部署在同一个WAR包里,接口之间的调用属于进程内的调用。而拆分为微服务独立部署后,服务提供者该如何对外暴露自己的地址,服务调用者该如何查询所需要调用的服务的地址呢?这个时候就需要一个类似登记处的地方,能够记录每个服务提供者的地址以供服务调用者查询,在微服务架构里,这个地方就是注册中心。

  • 服务如何监控。通常对于一个服务,我们最关心的是QPS(调用量)、AvgTime(平均耗时)以及P999(99.9%的请求性能在多少毫秒以内)这些指标。这时候就需要一种通用的监控方案,能够覆盖业务埋点、数据收集、数据处理,最后到数据展示的全链路功能。

  • 服务如何治理。可以想象,拆分为微服务架构后,服务的数量变多了,依赖关系也变复杂了。比如一个服务的性能有问题时,依赖的服务都势必会受到影响。可以设定一个调用性能阈值,如果一段时间内一直超过这个值,那么依赖服务的调用可以直接返回,这就是熔断,也是服务治理最常用的手段之一。

  • 故障如何定位。在单体应用拆分为微服务之后,一次用户调用可能依赖多个服务,每个服务又部署在不同的节点上,如果用户调用出现问题,需要有一种解决方案能够将一次用户请求进行标记,并在多个依赖的服务系统中继续传递,以便串联所有路径,从而进行故障定位。

针对上述问题,必须有可行的解决方案之后,才能进一步进行服务化拆分。

微服务化

微服务的概念最早是在2014年由Martin Fowler和James Lewis共同提出,他们定义了微服务是由单一应用程序构成的小服务,拥有自己的进程与轻量化处理,服务依赖,业务功能设计,以全自动的方式部署,与其他服务使用HTTP API通讯。同时,服务会使用最小规模的集中管理 (例如Docker)技术,服务可以用不同的编程语言与数据库等。

微服务就是将庞杂臃肿的单体应用拆分成细粒度的服务,独立部署,并交给各个中小团队来负责开发、测试、上线和运维整个生命周期。

微服务相比于服务化又有什么不同呢?在我看来,可以总结为以下四点:

  • 服务拆分粒度更细。微服务可以说是更细维度的服务化,小到一个子模块,只要该模块依赖的资源与其他模块都没有关系,那么就可以拆分为一个微服务。

  • 服务独立部署。每个微服务都严格遵循独立打包部署的准则,互不影响。比如一台物理机上可以部署多个Docker实例,每个Docker实例可以部署一个微服务的代码。

  • 服务独立维护。每个微服务都可以交由一个小团队甚至个人来开发、测试、发布和运维,并对整个生命周期负责。

  • 服务治理能力要求高。因为拆分为微服务之后,服务的数量变多,因此需要有统一的服务治理平台,来对各个服务进行管理。

微服务架构

从0开始学微服务

首先服务提供者(就是提供服务的一方)按照一定格式的服务描述,向注册中心注册服务,声明自己能够提供哪些服务以及服务的地址是什么,完成服务发布。

接下来服务消费者(就是调用服务的一方)请求注册中心,查询所需要调用服务的地址,然后以约定的通信协议向服务提供者发起请求,得到请求结果后再按照约定的协议解析结果。

而且在服务的调用过程中,服务的请求耗时、调用量以及成功率等指标都会被记录下来用作监控,调用经过的链路信息会被记录下来,用于故障定位和问题追踪。在这期间,如果调用失败,可以通过重试等服务治理手段来保证成功率。

总结一下,微服务架构下,服务调用主要依赖下面几个基本组件:

  • 服务描述

  • 注册中心

  • 服务框架

  • 服务监控

  • 服务追踪

  • 服务治理

不管是采用开源方案还是自行研发,都必须吃透每个组件的工作原理并能在此基础上进行二次开发。

采用微服务架构,可以帮助我们很好的解决实际业务场景中的问题:

  • 从组织层面讲,系统的分工更加明确,责任更加清晰。

  • 按照业务来划分服务,单个服务代码量小,业务单一,更易于维护。

  • 服务能力更专一,代码重复度降低,可复用性高,使服务调用更加简便。

  • 服务之间耦合性低,可随时加入服务,剔除过时服务。

  • 单个服务也可以弹性扩展,容错能力更强。

  • 更贴合云时代背景的软件开发运维环境,高效自动化构建部署。

  • 数据存储解耦,不必将所有数据集中在一个大库中,不易拆分扩容。


整理自:从 0 开始学微服务

anzhihe 安志合个人博客,版权所有 丨 如未注明,均为原创 丨 转载请注明转自:https://chegva.com/6547.html | ☆★★每天进步一点点,加油!★★☆ | 

您可能还感兴趣的文章!

发表评论

电子邮件地址不会被公开。 必填项已用*标注